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On the energy balance of a turbulent mixing layer

By G. T. CSANADY

Essex College, Assumption University of Windsor, Ontario
(Received 14 July 1962 and in revised form 21 November 1962)

An analysis of experimental results shows that the three most important terms
in the energy balance of a mixing layer-—the production, diffusion and dissipation
terms—may be expressed in terms of an eddy viscosity, eddy diffusivity for
turbulent energy, and a microscale, respectively, all being constant for a given
cross-section. A first-order solution calculated for the resulting differential
equation yields a turbulent intensity profile in qualitative agreement with
experiment. The peak value of the turbulent intensity is found to depend on a
dissipation constant and on the ratio of eddy diffusivity for turbulent energy
to eddy viscosity. Experiments carried out with the intention of reducing turbu-
lent intensities by means of extraneous vortices, generated by small delta
wings, have shown slight increases in intensity, presumably because eddy
viscosity increases with eddy diffusivity.

1. Introduction

The thin transition region which forms at a velocity discontinuity in a fluid
is termed a ‘mixing layer’. When a high-speed jet exhausts into stationary fluid,
for example, a mixing layer develops on the jet boundaries. Sufficiently far
from the exhaust, the mixing layers merge into a ‘fully developed’ jet, but
before this stage is reached there is a practically important region in which the
mixing layers grow unaffected by the existence of their opposites across the jet.
It is now believed that much of the aerodynamic noise of jets originates from the
mixing layer rather than from the fully developed jet (Lilley 1958; Ribner 1958).
The amount of noise radiated is proportional to a high power of the turbulent
intensity and how the intensity of turbulence in a mixing layer is maintained
becomes a practically important question.

An early idea aiming at jet noise suppression was the generation of vortices
in the mixing layer by serrations or teeth on the exhaust nozzle (Westley &
Lilley 1952). Such devices undoubtedly do suppressnoise, butitis still not known
in exactly what manner they produce their effect. There are several possible
explanations. For example, the increased diffusive capacity of turbulence due
to the externally created vortices may lead to a reduction of the mean velocity
gradient or of the turbulent intensity, or both. Kither effect is known to reduce
noise. Without going into further details on this point, it would be clearly
important to know whether the externally applied agitation is in fact likely to
reduce the turbulent intensity.

While there is no lack of theoretical investigations on the mean velocity profile
in a mixing layer (e.g. Schlichting 1960 for a summary, and also Townsend 1956),
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little work seems to have been done on the distribution of turbulent intensity
in such a layer. Townsend (1956) gives the self-preserving form of the energy
equation and quotes the experimental results of Liepmann & Laufer (1947}, but
this is where matters stand. It is one purpose of the present paper to construct an
approximate theory of energy balance in the mixing layer and thus relate the
turbulent intensity to the diffusive, dissipative, ete., properties of the turbulence.
Such a theory will then serve as a guide in assessing the probable effects of
extraneous vortices on the mixing layer.

External vortices in a mixing layer may be created by arranging delta-wing
shaped ‘ vortex generators’ at the nozzle of an open-jet wind tunnel. Some experi-
ments carried out in this manner are described below. Turbulent intensity pro-
files were measured by means of a commercially available constant-temperature
hot-wire anemometer.

The more important results of the investigations are as follows. (a)} The theory
shows that the peak turbulent intensity depends on an energy dissipation
constant and (although rather weakly) on the ratio of the exchange coefficients
for turbulent energy and for mean flow momentum (a quantity akin to Prandtl
number). A doubling of this latter ratio would result in a reduction of the peak
turbulent intensity by about 20 9%,. () The experiments demonstrate that the
extraneous vortices tend to increase the peak turbulent intensity slightly or
at least keep it constant. A detailed consideration of the results suggests that
the above mentioned ratio of the exchange coefficients remains more or less
constant.

The results discussed here are in accord with the findings of Corcos (1959)
on corrugated nozzles. Corcos also finds a peak turbulent intensity equal to or
slightly higher than that measured in a simple, circular jet. The well-known noise-
suppressing effect of these devices may therefore be tentatively ascribed to the
great reduction they produce in the volume occupied by high-intensity turbu-
lence accompanied by strong mean shear.

In the case of serrations or teeth on a nozzle the causes of noise reduction must
be sought for in a reduction of the mean velocity gradient, because this is the one
outstanding effect produced by the extraneous vortices. It is in fact well known
that the teeth on a nozzle reduce mainly the low frequency ‘shear noise’ whereas
the high frequency ‘self-noise’ of the turbulence (terminology of Lilley 1958)
may even be increased by the introduction of such devices.

2. Notation
In general the notation follows Townsend (1956); thus:

U,V  are components of the mean velocity,

u,v,w are components of the velocity fluctuation,

q% = u?+v2 4+ w? is the turbulent intensity,

€ is the energy dissipation per unit mass,

U is the jet exit velocity, directed along the z-co-ordinate,

5 = y/x is the non-dimensional cross-flow co-ordinate,

x is distance along the jet axis, measured from the nozzle exit.
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Other symbols of importance defined in the text are:

a  shear coefficient,

A dissipation constant,

v  diffusion constant,

vp eddy viscosity,

R, = U,z/v; eddy Reynolds number,

f(n) non-dimensional mean velocity profile,
g(n) non-dimensional intensity profile.

3. The basic equations

The kinetic energy of the velocity fluctuations in a turbulent mixing layer is
subject to the equation

2 1,2
(Uagz +V%)+ﬁ%§:—%(%qzv+ﬁ)—e. (1)

The various terms in this equation describe respectively the advection of
turbulent energy by the mean flow, the production of turbulent energy by an
interaction of the mean velocity gradient and shear stress, diffusion and dissipa-
tion of turbulent energy. The equation is accurate to the usual boundary-layer
approximation. Townsend (1956) gives a similar equation with one extra term
expressing the production of turbulent energy by normal stresses. Direct measure-
ments made by Liepman & Laufer (1947) show that excepting the outermost
region of the mixing layer this extra term is negligible compared to the others in
equation (1). Since, in the following considerations attention is focused mainly
on phenomena near the centre of the mixing layer, the extra term has been
neglected.

A companion relationship is the equation of mean motion. To the same degree
of approximation as equation (1), neglecting the viscous term, this may be written

oU oU owv
—_— —_— _— = &)
U6x+V6y+ 3y 0. (2)
The cross-flow component of the mean velocity, ¥V, may be eliminated by making
use of the equation of continuity,

oU oV
%+5& = 0. (3)
Also, measurements show that the flow is nearly self preserving beyond
R, = 4x10% so that one may assume the mean velocity and the turbulent

energy distributions to be of the form

U = Uflyle) = Unf(n), ¢ = Uigly/2) = Uig(y). (4)
Similar self-preserving forms hold for the distribution of the energy dissipation
€, the Reynolds stress uv and the diffusion term. However, the number of inde-
pendent equations, after the elimination of V by the aid of equation (3), is only
two, so that if the problem is to be made determinate, means must be found
for relating these other quantities to the two unknown functions defined in
cquation (4).
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4. The diffusion term

An examination of the experimental results of Liepmann & Laufer, as presented
by Townsend (1956, p 181), suggests that the diffusion term may be represented

as a ‘gradient diffusion’, - —

o 3¢+ 70 = — D(3¢%/2y). (5)
Taking into account the self-preserving nature of the flow the diffusion coefficient
may be expressed as D = yUz, 6)
with y a diffusion constant.

o
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Ficure 1. Diffusion constent ¥ in a mixing layer.

Dividing the measured values of the diffusion term by the second derivative
of the ¢2 profile, one may obtain the diffusion constant y at several values of the
independent variable y = y/x:

_ L g’ +pv)/oy

= T 7
Y= U 2oy (7)

A double differentiation of the measured ¢2 profile is involved and the accuracy
of this is inherently poor. In order to obtain reasonably reliable results, a tenth-
degree polynomial was fitted to the ¢2 profile measured by Liepmann & Laufer.
The values of the diffusion term d(3¢2v + pv)/dy were obtained in the experiments
of Liepmann & Laufer (1947) by difference between all the other production,
dissipation, ete., terms so as to make equation (1) balance. The resulting dis-
tribution of this term seems to contain some important errors. The integral of the
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diffusion term over all y should, for example, come to zero, since the integrand is
a space derivative, vanishing at large enough absolute values of y. This is
certainly not the case for the experimental curve (see Townsend 1956, figure 8-4).
Particularly at relatively large positive values of 7 = y/x the measured (or rather
computed from other measurements) results appear to show too small a gain of
turbulent energy by diffusion.

Thus the values of y calculated as indicated in equation (7) may be expected
to show considerable scatter. Figure 1 shows the results of the calculations be-
tween — 0-10 < % < 0-05. Athigher positive values theresults becomenonsensical:
v fluctuates rapidly and becomes negative in certain places. It ig in this region
that the whole experimental technique becomes unreliable, the turbulent velocity
fluctuations being of the same order of magnitude as the mean velocity. Townsend
(1956) has already voiced some doubts about the validity of measurements of
the shear coefficient, %/zﬁ, in this region.

Allowing for all the probable inaccuracies, the fact still remains that the curve
representing the diffusion term is very much of the right shape to be proportional
to dg*/dy. Thus the gradient diffusion hypothesis, v = const., will here be
accepted as reasonable. From figure 1 one may estimate a crude approximate
value for the diffusion constant,

¥ ~ 1/600. (8)

5. The dissipation term
In the observations of Liepmann & Laufer (1947) the energy dissipation ¢ was
calculated from the well-known relation

€ = 15vu2[A2, (9)

where A is the microscale of turbulence and v the kinematic viscosity of the
fluid. An important experimental finding was that the microscale A is constant
for any cross-section. Then, the self-preserving nature of the flow requires that
2
A? = const.%l. (10)
This relationship has been explicitly confirmed by Liepmann & Laufer for
the self-preserving range. After substitution into equation (9) one finds the
expression for energy dissipation
U ¢ Ui
€ z U3 2 9, (11)
where A is an energy dissipation constant, and where proportionality of u? and
g* has been assumed. The single constant A now characterizes the energy dis-
sipation in a mixing layer in the same way as the constant v characterizes the
diffusion of turbulent energy. To calculate A we make use of the empirical relation-
ships given by Liepmann & Laufer,

X = 0-04 . (12)
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The assumption that 42 and ¢2 are proportional is not strictly true, but in the
absence of accurate data on the third velocity component w? a reasonable hypo-
thesis is — —
¢? = 2-25u2. (13)

Townsend (1956) assumes ¢2 = 2 (u2 +?) and equation (13) is obtained from
this by setting u? = 2v2, which describes the measured profiles near the centre
of the mixing layer reasonably accurately. Observing now that U] in the experi-
ments of Liepmann & Laufer was 18 metres per second the value of A may be
calculated. One finds approximately A ~ 1.

6. The production term

The principle of ‘structural similarity’ (Townsend 1961) leads to the postulate
= ag? (14)
with « = const. According to the experimental evidence, although the coeffi-
cient o varies more slowly than g2 itself, it would be not quite accurate to regard o
as constant over a cross-section or even over the whole field. The main discrepan-
cies occur, however, at the low-velocity edge of the flow and, as pointed out by
Townsend (1956), may to some extent be of instrumental origin. There is also some
supporting evidence from other kinds of shear flow (wakes, boundary layers,
channels) to show that equation (14) is approximately valid over at least a
substantial proportion of the flow cross-section. Thus it would not be unrealistic
to accept this equation as a working hypothesis.

At the same time, it is also well known that the assumption of an eddy viscosity
vy constant over a cross-section furnishes a reasonably accurate description of
the mean velocity profile. On examining the details it turns out that the eddy
viscosity, defined by the equation

(15)

is indeed nearly constant between —0-1 < 7 < 0-05 (Townsend’s co-ordinates),
but decreases considerably near the low-velocity edge of the flow. Again, the
directly measured values of wv in this region are subject to considerable instru-
mental error and it is not certain how far the observed variation of v, is real.
A comparison of the measured mean velocity profile with calculated ones suggests
that the eddy viscosity decreases somewhat near the edges of the flow. On the
whole, the accuracy of equation (15) seems to be in the same category as that of
equation (14): both represent realistic working hypotheses with little to choose
between the two in regard to probable accuracy.

Expressed in terms of the functions f(%) or g(%), equations (14) and (15)

become W = all3g, (14a)
o= Y
wuY = z dy’ (15a)

In the course of calculations it becomes evident that equation (15¢) is much
more convenient to use than equation (14a).
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7. The mean velocity profile

If the turbulent shear stress is expressed in terms of an eddy viscosity, as has
been done in equation (15a), the equation of mean motion becomes independent
of the distribution of turbulent intensity and may be solved directly. The solution
is the well-known one due to Gortler (see Schlichting 1960) which is best expressed
in terms of the integrated velocity distribution

Fy) = f " oy (16)

Here the co-ordinate 4 = 7, refers to the point where the cross-component V
of the mean velocity is zero; in Townsend’s co-ordinates 7, = 0-05.

As may be seen already from equation (15a) the only numerical factor entering
Gaortler’s solution is the Reynolds number of the turbulence,

By = Uyzfvy. (17)

The value of this may be estimated directly, by means of equation (15), or by
fitting Gértler’s profile to the experimental data. With the exception of the low-
velocity region there is fair agreement between the two determinations. On the
basis of the measurements of Liepmann & Laufer (1947) and Reichardt (1942; see
Schlichting 1960) one may estimate R, to be about 600.

8. The distribution of turbulent intensity

When the hypotheses contained in equations (5), (6), (12) and (15a) are
introduced into the energy balance, equation (1), one finds after some minor
reductions that iy A 1 .. ldg

T Ry Ty

The second term on the right of this equation is zero at the position of maximum
turbulent intensity and also where V' = 0 (cf. equation (16)). This term repre-
sents the advection of turbulent energy by the mean flow and has been calculated
from direct measurements by Townsend (1956). As may be expected, its value is
small near the centre of the mixing layer (where dg/dy = 0) and on the low-velocity
side of the centre (where one finds the point ¥ = 0), but it is a dominant term well
away from the centre of the layer, on the high-velocity side. One may proceed
therefore by ignoring this term in a first approximation. After g(y) has been
calculated on this basis it would be possible to improve on the approximation
by substituting dg/dy on the right of equation (18) and calculate a second-
order solution g(7). Provided that the iterative procedure converged, any desired
degree of accuracy could be attained in this manner.

At any stage of this iterative procedure the right-hand side of equation (18)
is regarded as a known function of #, say (7). Then it is not difficult to show that
the solution of the equation which makes g(») and g'(y) tend to zero at large
absolute values of 7 is

g = e f” ksds | () eHds. (19)
—w “+ o

(18)
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The first-order solution is obtained by setting
Y= —F"Bpy. (20)

As a very crude approximation, one may try to represent F”(n) (the mean
velocity gradient) by the following step function

” R%, . 7\ m\¥
Fr=—i (R;) ““(E)’

= ( otherwise.

(21)

This value of F” agrees with the theoretical result of Gortler at 4 = 0, where the
velocity gradient is a maximum. The turbulent intensity calculated from this
approximation is therefore likely to be an overestimate, but should at least
provide qualitative information on the effects of the constants y, A and R
characterizing diffusion, dissipation and production of turbulent energy,
respectively. When the integrations indicated in equation (19) are carried out,
one finds that

e—klnl b A\ i 3 \
o= x> ()]

1 AN ) (22)
A [1 exp ! (?’RT) } cosh [(A/vy)% 4] | < z) |
Thus the maximum value of g is given by
_ 1—exp[—(mAjyR.)}]
gmax - 47TA_ . (23)

When the observed values y = 515, A = %, B, = 600 are substituted into this
formula one finds g, = 0-15, which is about 3 times the observed value, certainly
a strong overestimate. As remarked before, the practical value of this result lies
mainly in providing a fairly simple basis for estimating the probable effects of
changing turbulence constants. In particular, it is to be noted that if the produect
vRy is doubled, while A stays constant, the maximum turbulent intensity, as
given by equation (13), drops by 20 %,.

A better estimate of F"? is provided by Gortler’s first-order solution, which
gives, in place of equation (21),

1
V= —mexp(—%ﬂrﬂz)- (24)

The comparison of Gértler’s solution with experimental values suggests that the
Gaussian curve underestimates the velocity gradient, but not as much as equation
(21) overestimates it. After the integrations are carried out one finds

R
= RO loosh (A 9]+ exp{— (A7} SR 7 — (A/27 )
—Yexp{(Aln)E} ${(3Rr)} 7+ (A/2yRp)B,  (25)
i
with ¢(t) = 2 f exp(—p?) dp.
0

e
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The maximum value of g, at 9 = 0, becomes now

exp (A/2yRr)
Imax = 4(277’)’ART)% [1 ¢{(A/27RT)%}] (26)
When the estimates of the constants used above are substituted one finds
Jmax = 0-115, which is still more than twice the value observed by Liepmann &
Laufer. Since /' as used in this last calculation is an underestimate, the dis-
crepancy between theory and observation must now be attributed to a neglect
of the ‘damping’ term in equation (18), the term containing dg/dy. Alittlereflection
shows that the turbulent intensity distribution of equation (25) in fact predicts
some steep gradients dg/d#n, which would act as ‘negative’ sources.

Again, the main point of this result is a prediction of the variation of g,
with varying turbulence constants. With yR; doubled, equation (26) shows a
229, drop in turbulent intensity, almost exactly as with the earlier
approximation.

An interesting feature of the result (either equation (25) or (26)) is that the two
constants yR, only occur in combination, as a product. From the definitions of
these constants (equations (6) and (17)) it is at once obvious that the product
v Ry is the ratio of the exchange coefficient D (diffusivity) of turbulent energy to
the eddy kinematic viscosity v;. Such a ratio is akin to the Prandtl number of
the turbulence. Using the numerical values derived above from the experimental
results of Liepmann & Laufer one finds a value of unity for the ratio D/v,.
Townsend (1956) also quotes some results of heat diffusion measurements show-
ing a turbulent Prandtl number close to 1-0, which is also the basic assumption
underlying ‘Reynolds’s analogy’ in turbulent heat transfer.

The central idea of the experimental investigations described below was that
by means of extraneous vortices the diffusive capacity of turbulence for turbulent
energy could possibly be increased without affecting the other parameters.
The theory now shows that the exchange coefficient ratio D/v, has to be increased
very considerably for a significant effect on the peak turbulent intensity. The
possibility of this seems remote when one considers that the turbulent Prandtl
number moves within a narrow range in several different kinds of turbulent
flow.

As a check on the qualitative correctness of the above theory the intensity
profile predicted by equation (25) may now be compared with experiment.
This has been done in figure 2. The difference in the location of the maxima
is insignificant, being due to an arbitrary choice of zeros in the experiments.
The curve labelled ‘theory’ has been obtained with the aid of the constants
estimated before and no attempt was made to produce better agreement by
adjusting the constants. A different choice of the value for the dissipation con-
stant A would be particularly powerful in producing better agreement. For
example, setting A = 0-5 in place of 0-33 yields a peak turbulent intensity of
0-0873 which is much closer to the measured values than 0-115, obtained with
A = 0-33. However, the qualitative correctness of the theory is obvious from
the figure without adjustments and it is equally clear that a close fit with experi-
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ment may be obtained by an appropriate adjustment of the three constants vy,
Ryand A.

Direct numerical integration of equation (18), (without neglecting the dg/dy
term) may be expected to produce much better correspondence with observation
than the above calculations. This would, however, have relatively little signifi-
cance because the theory itself has been derived from an analysis of the observa-
tions. The point of the above calculations is that they yielded an explicit (if
approximate) formula for assessing the influence of changing turbulence con-
stants y, Ry, A, on the peak intensity.

010
(D
~ 2)
E
&
0-05—
(3)
0 1 1 | 1 | 1 1
-0-15 -0-10 —0-05 0 0-05 0-10 0-15
high U 7 low U

Ficunre 2. Turbulent intensity profile in the mixing layer: (1) theory (no adjustable
constants), (2) present measurements, (3) Townsend.

9. The experimental arrangement

In order to obtain experimental data for this investigation a small open-jet
wind tunnel has been constructed at Essex College. The details of the equipment
have been described in a report of limited circulation and here it is only intended
to summarize the more important features.

For the present investigations it was felt that some simple and cheap apparatus
would be satisfactory. The properties of the free-mixing layer are known from
the accurate work of Liepmann & Laufer (1947) and the main interest in the
present case centres on how these properties could be modified. Therefore no
great stress was laid on keeping the mean velocity of the merging jet exactly
uniform (there are departures amounting to + 59, from the mean) nor was it
attempted to produce a low turbulence level in the jet. (At nozzle exit the ratio
R.M.S. velocity to mean velocity was about 1-59,). However, the 2:1 reduction
section of the nozzle was designed using perfect fluid theory to produce a steady
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pressure drop along the wall with the effect that the boundary-layer thickness
at the exit was of the same low order of magnitude as in the experiments of Liep-
man & Laufer. The nominal size of the exit nozzle is 192in. in the vertical by
72in. in the horizontal. The measurements were carried out on one side, about
6in. above the bottom of the duct at a jet velocity of approximately 70 ft./sec.

One important difference as against the measurements of Liepmann & Laufer
was that mixing layers were allowed to develop on both sides of the plane jet.
Both Reichardt (see Schlichting 1960) and Liepmann & Laufer (1947) state
that it is important to prevent the formation of the second mixing layer by
joining one nozzle wall to a flat plate. Presumably it is then possible to follow
the development of one mixing layer for a larger distance axially. It is, however,
conceivable that a somewhat different large-eddy pattern will be set up by this
asymmetric arrangement than in a regular jet, although on the basis of the
theoretical results in § 8 one would not expect this to exert a significant influence.
If the mixing layer studies are to mean anything, they should be applicable to
two-sided jets, possibly with some minor modifications.

As vortex generators equilateral triangles of sides 4in. (‘small’) and 6in.
(‘large’) were used, set at small incidences against the stream in the manner of
delta wings. They were supported on flat plates held parallel to the stream so
as to avoid causing a flow disturbance.

The core of the instrumentation is a DISA constant-temperature hot-wire
anemometer (described by Kidron 1960). This enables direct readings of mean
velocity and root-mean-square turbulent velocity to be taken and an outlet may
also be connected to an oscilloscope for qualitative investigations of the turbu-
lence. Under the test conditions, the frequency response of the instrument was
virtually perfect up to 10ke/s, when, in a typical location, 93 9, of the turbulent
energy was contained in the frequency range below 1ke/s. The noise level was
quite negligible in comparison with the fluctuations produced by the turbulence.

10. The experimental results
Self-preservation

According to the results of Liepmann & Laufer the mixing layer should be very
nearly self-preserving beyond R, = 4 x 105, or, in the present case, beyond about
10in. downstream of the nozzle exit. One way to check this is to show («? U$)?
against U/, in a graph, as has been done in figure 3, for the three axial stations
x = 10in., 15in. and 20in. The profiles are identical at x = 15in. and 20in. and
there are only slight discrepancies at « = 10in. Further downstream the two
mixing layers begin influencing each other, but in the self-preserving range the
test results should be comparable to those of Liepmann & Laufer. All subse-
quently reported readings were taken at x = 15in. With vortex generators
present, self-preservation cannot, of course, be expected to hold.

Mean velocities
Figure 4 contains mean velocity profiles obtained with and without vortex
generators. The profile without vortex generators is identical with that measured
by Liepmann & Laufer. The other three cases are: © too little extra mixing
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to affect the mean velocity gradient, the vortex generators only produce a lateral
displacement of the mixing layer; the points A showing lateral displacement plus
a considerable reduction of the velocity gradient; @ too much interference with
the mixing layer leading to an irregular profile. The abscissa is cross-flow dis-
tance measured from an arbitrary origin.

R.M.S. turbulent velocities (axial component w only)

These were measured simultaneously with the mean velocities and are shown in
figure 5. The mean-square turbulent velocity without vortex generators is
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Figure 3. Turbulent velocities shown against mean velocities at three axial stations.
0, 20in.; 4+, 10in.; A, 15in.
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F1gURE 4. Mean velocities with and without vortex generators: (1) no vortex generators,
(2) small vortex generators, low incidence, (3) large vortex generators, low incidence,
(4) large vortex generators, high incidence.
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also shown in figure 2 (labelled ‘present measurements’), where it may be seen
that this profile is nof identical with that measured by Liepmann & Laufer.
The values in figure 2 have been calculated on the assumption that ¢% = 2-2542
(equation (13) above). The discrepancy of the two experimental curves is quite
puzzling particularly in view of the agreement of mean velocity profiles and of
the self-preserving range.

The vortex generators are seen to produce a slight increase in the peak turbu-
lence levels and a broadening of the turbulent region.
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Fraure 5. Turbulent velocities with and without vortex generators. Curves
numbered as in figure 4.

Structure of turbulence

An effort was made to explore qualitatively any changes in the turbulent structure
that may have been caused by the vortex generators by means of oscilloscope
trace photographs. No obvious differences could be detected in this manner.
The intermittency of the turbulence was equally evident in the outer layers
with or without vortex generators as was the existence of a broad range of
Fourier components. Using the high pass filter on the instrument an integrated
spectrum curve could be obtained. Figure 6 shows two such curves obtained with
and without vortex generators, at points having the same mean flow velocity.
It is planned to conduct more detailed surveys of the turbulence when further
instrumentation is available. Meanwhile, the above evidence suggests that the
only appreciable effects of appropriate external vortices acting on a mixing
layer are (1) a reduction of the mean velocity gradient, (2) a broadening of the
turbulent region, and (3) a slight increase in peak turbulent intensity.
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11. Discussion of the results

The one puzzling result of this investigation is that the peak root-mean-square
turbulent velocity was found to be about 20 9%, higher than the values of Liepmann
& Laufer. It is quite unlikely that the differences in the arrangement, notably
the ‘two-sidedness’ of the jet, could be responsible for the difference. First,
it is difficult to believe that any such influences would act on the turbulent
intensity profile only, not on mean velocities. Secondly, the root-mean-square
turbulent velocity changed only by about 109, or less under the effect of an
external disturbance as violent as a relatively large vortex generator. While the
matter remains sub judice, it appears at present that the difference in measured
turbulent intensities is instrumental in origin.

Lo ——A_
o~
~
~
~
~
\\
t\
075 AN
N
N
N
\\
t\\
F 050 N
g
N
AN
AN
~,
0-25- b _
~
~
\\
- -
=%

1 [l 1 1 1 . |
5 10 50 100 500 1000

frequency (c/s)

Freure 6. Integrated turbulence spectrum with and without vortex generators.
Vortex generators: + without, A with.

As to the influence of the vortex generators on the mixing layer, the two major
effects observed were a broadening of the turbulent region and a reduction in
mean velocity gradient. It isreasonable to assume that the turbulent shear stress
remained constant or at least did not decrease, because the slowing down of the
jet had to take place in an equal or a shorter axial distance than without the vortex
generators. It follows then that the eddy viscosity had to increase and the propor-
tionate change appears to be very much the same as for the eddy diffusivity,
the increase of which may be held responsible for the broadening of the turbulent
region. These are plausible hypotheses, subject to confirmation in the course of
more detailed surveys. At the very least it is unlikely that the introduction of
extraneous vortices has increased the ratio of eddy diffusivity to eddy viscosity.

On this basis the theory shows that the peak turbulent intensity should
not decrease and this is well borne out by experiment. In fact there is a moderate
increase but the exact cause of this cannot be pin-pointed on the basis of the
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observations reported herein. It should be noted that the theoretical analysis
based on self-preservation can only offer guidance as to what to expect in a less
regular arrangement.

It is of some interest to point out the correspondence of these results with
the observations of Corcos (1959) on corrugated nozzles. Comparing the turbu-
lence of a circular and a corrugated nozzle (such as those found on aireraft) Corcos
finds that the peak turbulent intensities near the ‘exposed’ tips of the corruga-
tions are at least as high as those found in the mixing layer of a circular nozzle.
The important difference is that these high turbulent intensities only oceur over
quite small regions, for they are not present in the space between two
corrugations.

The above investigation was supported by a grant from the National Research
Council of Canada, which is gratefully acknowledged.
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CORRIGENDUM

‘The characteristics of the turbulence in the mixing region of a round jet’, by
P. O. A. L. Davies, M. J. Fisuer axp M. J. Barrarr, J. Fluid Mech. 15,
1963, pp. 337-67.

The ordinate scale for the inverse of the shear on figure 12 is incorrect as
drawn, and should be multiplied by the factor § so that the times read 33, 67,
100 usec instead of 50, 100, 150, etc. There is a corresponding alteration to
equation (4.2), which should now be

L] ~ 4-5/(6U [ox,). (4.2)
Equation (4.6) should read as
(e3)} Ly Ly, = 0-9 | (4.6)

and correspondingly the ordinate scale on figure 19 should be multiplied by 3
to read 0-3, 0-6, 0-9, etc.



